PET Flake Injection

Novel Technology Development

Data Monitoring Report

report required by Article 13 of Regulation (EU) 2022/1616

10 October 2025

To be completed on receipt of the delayed analysis report

The data presented in this report are based on the measurements performed by a third-party laboratory, which was contracted by PET EUROPE. The data provided is the property of PET EUROPE and cannot be copied, reproduced, or distributed without their prior written consent. PET EUROPE is not responsible nor liable for any errors or inaccuracies that may have occurred during the measurement process by the third-party laboratory. The data are provided for informational purposes only and do not constitute any endorsement or recommendation by PET EUROPE.

Table of Contents

intro	duction	3
a)	Brief description of the novel technology – Art 13(5)(a)	3
Art F R	Summary of the reasoning on the capability of the novel technology and the recycling cess(es) to manufacture recycled plastic materials and articles that meet the requirements of icle 3 of Regulation (EC) No 1935/2004 and that are microbiologically safe – Art 13(5)(b)	4 4 5
·	JS FDA Guidance)
c) inp	List a list of all substances with a molecular weight below 1000 Dalton found in the plastic uts and recycled plastic output and 20 first detected incidental contaminants – Art 13(5)(c)	5
d)	List of contaminating materials regularly present in the plastic input - Art 13(5)(d)	3
e) (d)	Analysis of the most likely origin of the identified contaminants referred to in points (c) and - Art 13(5)(e)	9
f) rec	Measurement or estimation of the migration levels to food of contaminants present in the ycled plastic materials and articles - Art 13(5)(f)	9
g)	Description of the applied sampling strategy - Art 13(5)(g)10)
h)	Description of the analytical procedures and methods used - Art 13(5)(h)10)
i) exp	Analysis and explanation of any discrepancies observed between contaminant levels sected and decontamination efficiency - Art 13(5)(i)12	2
j) par	a discussion of the differences with previous reports published in accordance with this agraph, if any - Art 13(5)(j)1	3
Appe	ndix I –.FLAKE INJECTION – PET Production Process14	1
plast	ndix II – List of all substances with a molecular weight below 1.000 Dalton found in the ic inputs to each of the decontamination installations and in the recycled plastic output of, sorted in descending order by their relative occurrence	
Gloss	ary of Terms10	5
RFFFI	RFNCFS	7

Introduction

The novel technology 'PET Flake Injection' was notified as required under Articles 10(2) and 10(3) of Commission Regulation (EU) 2022/1616 on 17th March 2023.

Article 13 of Commission Regulation (EU) 2022/1616 states the following:

"a recycler operating a decontamination installation in accordance with Article 11 of the regulation shall monitor the average contaminant level on the basis of a robust sampling strategy which samples the plastic input batches and the corresponding plastic output batches".

On 10 October 2023, 10 April 2024 and 10 October 2024, a first, second and third report discussing the monitoring data and the information as required by Article 13(5) have been published. The enclosed report is based on the latest information from all installations using the novel technology received in accordance with Article 13(3) for the fourth monitoring period and provides the information required by Article 13(5) of the Regulation.

The different subsections (a) to (j) of Article 13(5) are discussed separately.

a) Brief description of the novel technology – Art 13(5)(a)

The Flake Injection process has the capability to combine depolymerised recycled Polyethylene Terephthalate (rPET) with virgin material at different stages of a conventional PET production process for subsequent food contact use.

The input material of the Flake Injection process is previously processed PET as detailed in Table 2 of ANNEX I of COMMISSION REGULATION (EU) 2022/1616 that is deliberately depolymerized (preprocessed) before it enters the high surface area decontamination polymerisation reactor. Referring to the flow scheme Appendix !: Flake Injection – PET Production Process; previously processed PET may be introduced directly to injection point 1. or partially depolymerised with ethylene glycol, in either a stir-tank reactor or an extruder, to a defined degree of polymerisation to correspond with that of the polymer in the PET production process at the injection points labelled 2 to 6 in the flow scheme or any points in-between. This initial depolymerisation process of the previously processed PET allows for filtration of the intermediate polymer to remove solid contaminants before the introduction of the recycled material into a PET production process at a blend rate of up to 100% recycled content. The high surface area decontamination polymerisation technology increases the Intrinsic Viscosity (IV) of the PET polymer and removes polymerisation by-products under high vacuum of less than 20mbar, with a high temperature greater than 260°C and with a residence time greater than 30 minutes. This high surface area polymerisation technology also serves as a Decontamination Technology to efficiently remove vapourised contaminants that may have been introduced into the process further upstream by the addition of previously processed PET. Following the high surface area polymerisation and decontamination, the polymer melt is filtered for either direct use, or granulation, in the manufacture of food contact materials or articles or for introduction into a Solid State Polycondensation (SSP) process or a Conditioning Silo should further processing be needed to meet the material parameters required for its end use.

b) Summary of the reasoning on the capability of the novel technology and the recycling process(es) to manufacture recycled plastic materials and articles that meet the requirements of Article 3 of Regulation (EC) No 1935/2004 and that are microbiologically safe – Art 13(5)(b)

All references in this section are references to documents available in the dossier submitted in accordance to Articles 10(2) and 10(3) of Commission Regulation (EU) 2022/1616 on 17th March 2023.

Flake To Resin (FTR)

Ref. ANNEX II Table 1 (1) Decontamination efficiencies of the Novel Technology have been determined by Welle (2008).

Table VI. Concentrations (determined using the HFIP extraction method) of the surrogates in the investigated PET samples of Trial 2 (cocktail A at 10 ml min⁻¹, 50% PCR flakes).

		Concentration (ppm)							
	Toluene	Chloroform	Chlorobenzene	Phenyl cyclohexane	Methyl salicylate	Benzophenone	Lindane		
Calculated contamination concentration	3295	5194	1255	327	1004	885	775		
Before deep-cleansing	1999 ± 28	3075 ± 47	655 ± 9	163 ± 2	<1.0	345 ± 1	133 ± 1		
After deep-cleansing (final product)	<2.7	<0.8	<0.9	<0.2	<1.0	<0.2	<0.8		

The study concludes that the cleaning efficiencies for the applied surrogates are above or far above 99.9%. The high cleaning efficiencies are due to the high diffusion rates of compounds in the molten PET.

Based on EFSA's criteria for safety evaluation of PET recycling processes - if a recycling process is able to reduce an input reference contamination of 3 mg/kg PET to a Cres (Residual Concentration) not higher than a Cmod (Modelled Concentration) corresponding to the relevant migration criterion, the potential dietary exposure cannot be higher than 0.0025 μ g/kg bw/day and recycled PET manufactured with such recycling process is not considered of safety concern.

Ref. ANNEX II Table 1 (2) Fraunhofer Dossier-FTR 20061109.pdf

Reversed Approach

Based on Safety Evaluation of Polyethylene Terephthalate Chemical Re-cycling Processes. Frank Welle. 'Reversed Approach'.

Ref. ANNEX II Table 1 (3) <u>Chemical_recycling_submitted.pdf</u>

FTR: Calculated maximum concentration (Reference Contamination – the level of contamination that the process can remove, i.e. Cmod:Cres =1) corresponding to a migration of 0.1 μ g/l after storage for 365 d at 25 °C (EU cube, AP = 3.1, tau 1577 K, bottle wall thickness 200 μ m, density of PET 1.4 g/cm³). Decontamination Efficiency of 99.9%.

mm Hg (25°C)	°C	g.mol ⁻¹	FTR	Reference Contamination	Decontamination Efficiency	Cres	Cmod	
Vapour Pressure	ВР	Mw	Surrogate	mg/kg	%	mg/kg	mg/kg	Cmod:Cres
28.4	110.6	92.1	Toluene	90	99.9%	0.09	0.09	1.0
197	61.1	119.4	Chloroform	100	99.9%	0.10	0.10	1.0
12	131.7	112.6	Chlorobenzene	90	99.9%	0.09	0.09	1.0
0.0343	222.9	152.2	Methyl Salicylate	130	99.9%	0.13	0.13	1.0
0.04	240.1	160.3	Phenyl Cyclohexane	140	99.9%	0.14	0.14	1.0
0.00193	305.4	182.2	Benzophenone	160	99.9%	0.16	0.16	1.0
9.40E-06	311.0	290.8	Lindane	310	99.9%	0.31	0.31	1.0

Artenius.

EFSA-Q-2011-00969 - EFSA refused to evaluate as out of the scope of Regulation (EC) 282/2008.

Ref. ANNEX II Table 1 (7) <u>EFSA_Letter Related to Artenius Unique Process.pdf</u>

Ref. ANNEX II Table 1 (8) <u>Fraunhofer Institute. Challenge Test.pdf</u>

US FDA Guidance

Use of Recycled Plastics in Food Packaging (Chemistry Considerations): Guidance for Industry.

U.S. Department of Health and Human Services Food and Drug Administration Center for Food Safety and Applied Nutrition July 2021

VIII. Elimination of Data Recommendations for 3° Recycling Processes for PET and PEN

Based on a comprehensive review of all surrogate testing data submitted over the past decade for 3° recycling processes for PET and polyethylene naphthalate (PEN), FDA concludes that 3° recycling of PET or PEN by methanolysis or glycolysis results in the production of monomers or oligomers that are readily purified to produce a finished polymer that is suitable for food-contact use. Both 3° processes will clean the polyester sufficiently to allow it to be considered of suitable purity, even assuming 100% migration of residual surrogate to food. This is a significant difference from the surrogate testing of 2° recycling processes. Secondary recycling processes often produce PET that is insufficiently cleaned to withstand 100% migration calculations for the residual surrogates. Under these circumstances, FDA recommends additional migration tests to demonstrate that the finished PET meets the $1.5~\mu g/person/day~EDI~limit$.

Based on a determination that 3° recycling processes produce PET or PEN of suitable purity for food contact use, FDA no longer recommends that such recyclers submit data for agency evaluation. Because 3° processes for polymers other than PET and PEN were not the subject of FDA reviews, recyclers who wish to engage in 3° recycling of polymers other than PET and PEN are encouraged to submit data for evaluation.

Ref. ANNEX II Table 1 (9) Recycled-Plastics-Food-Packaging-Chemistry-ConsiderationsGuidance-04112022-1321.pdf

c) List a list of all substances with a molecular weight below 1000 Dalton found in the plastic inputs and recycled plastic output and 20 first detected incidental contaminants – Art 13(5)(c)

As developer of the Novel Technology, PET EUROPE has coordinated with the recyclers regarding the selection of the sampling strategy, the analysis to be performed and the selection of a third-party laboratory. The choice of the laboratory was based on its experience and expertise in analysing PET samples, the relevance of its analytical equipment and validated methods as well as the capability to identify and to risk assess non-intentionally added substances (NIAS) taking into account the particularity of this specific technology.

Analysis for the detection and quantification of substances in polymer represents a major challenge, especially when they are present at very low levels i.e. ppb levels. Although significant advances are regularly reported in the literature, reliable quantification of these substances to the ppb level and without compromising the integrity of the polymer is rarely feasible and certainly not standardized even for the most qualified laboratories. What is presented in this report has been obtained with the state-of-the-art analytical equipment (Table 6) that allows the detection of minute concentrations of various organic substances present in the input and output materials. The list of substances with a molecular weight below 1000 Dalton detected in the plastic input and its recycled output is given in Appendix II. The substances were sorted in descending order by their relative occurrence in the plastic input. The analytical methods do not distinguish between incidental contaminants and PET reaction products such as PET oligomers. In this report, incidental contaminants were identified by comparing the analytical data of the input samples with virgin PET samples analyzed under the same conditions and by the same analytical methods.

Table 1 lists the 20 most frequently detected and identified incidental contaminants in the input material using the different analytical methods specified in section h.

The frequency of detection was determined by dividing the number of samples in which a particular substance was detected by the total number of samples analysed. The average concentration of the incidental contaminants was calculated by taking into account only those samples in which it was detected. If the incidental contaminant was detected but below the quantification limit, the concentration used to calculate the average concentration was the limit of quantification. If the incidental contaminant was not detected in the output (frequency of 0%), the limit of detection is reported in the Table.

In several samples 2-butenal was detected as it was also the case during the previous monitoring cycles. However, the laboratory did further research which indicated that 2-butenal is formed during the analysis in the GC-MS by the condensation reaction of acetaldehyde. Therefore, the results of 2-butenal were not reported in this report and should also be removed in the previous reports.

This novel technology allows the input material to be introduced into the decontamination process at variable ratios of input material/virgin material. Therefore, the input material is sometimes diluted during the process with virgin material. The concentrations provided in Table 1 are the concentrations of incidental contaminants prior to any possible dilution. However, the dilution with virgin material is taken into account for the evaluation of the decontamination efficiency (section i).

Table 1: List of the first 20 detected incidental contaminants in the input material, their frequency of detection and average amounts in input and output samples.

To be completed on receipt of the delayed analysis report

For the inorganic analysis, a summary of the obtained analytical results is given in Table 2.

Table 2. Summary of the analytical results for inorganic elements.

		_	

To be completed on receipt of the delayed analysis report

The levels of antimony are low compared to what is expected for PET. The laboratory assumes that this is due to the fact that the samples, after dissolution as part of the sample preparation, have been stored longer than usual before being measured. As a result, Sb-glycolate might have slightly precipitated. The high average level of cobalt in the output material is due to the intentional addition of a cobalt-containing substance during the production of the output material by one of the members of the consortium.

None of the analysed primary aromatic amines (Table 7) were detected in the input or output samples. In addition, no BPA, BPF or BPS was detected in the samples with targeted analysis.

d) List of contaminating materials regularly present in the plastic input - Art 13(5)(d)

Table 3 lists the contaminating materials regularly present in the PET plastic input.

Table 3. Contaminating materials regularly present in the PET plastic input.

to be completed on re	celpe of the delayed analysis report

e) Analysis of the most likely origin of the identified contaminants referred to in points (c) and (d) - Art 13(5)(e)

To be completed on receipt of the delayed analysis report

f) Measurement or estimation of the migration levels to food of contaminants present in the recycled plastic materials and articles - Art 13(5)(f)

An estimation of the migration levels was made based on the average levels of incidental contaminants in the output samples in which they were detected (Table 1) and assuming a worst case total migration to food using the average weight of 27.2g PET for a one litre PET bottle (Table 4). Since EFSA (2024) acknowledges that generally recognised diffusion migration models overestimate migration by a factor of 5 for substances \leq 150 Da and by a factor 10 for substances > 150 Da, this worst case total migration also overestimates migration by at least these factors.

Table 4. Worst case migration of incidental contaminants present in the output samples.

To be complet	ted on receipt	of the delayed	analysis repor	

^{*}considering 1L beverage filled in a PET bottle of 27.2g

The worst case estimation of the migration levels of the inorganic substances is shown in Table 5.

Table 5. Worst case migration of incidental contaminants present in the output samples.

To be a	ompleted on re	ceipt of the delayer	d analysis report

^{*}considering 1L beverage filled in a PET bottle of 27.2g

g) Description of the applied sampling strategy - Art 13(5)(g)

To be completed on receipt of the delayed analysis report

h) Description of the analytical procedures and methods used - Art 13(5)(h)

Samples of PET input batches and their corresponding output batches were labelled for traceability purposes and shipped in clear and hermetically sealed containers.

The sample preparation methods and analytical procedures and methods used for the analysis of the samples as well as their limits of detection and quantification are summarised in Table 6. In all cases, 3 independent replicates were analysed.

Table 6. Applied analytical procedures and methods including their limits of detection and quantification.

To be completed on receipt of the delayed analysis report						

HS: Head Space; SPME: Solid phase micro-extraction; GC: Gas chromatography; MS: Mass spectroscopy; QqQ: triple quadrupole; QTDF: Quadrupole- time-of-flight; UPLC: ultra-high performance liquid chromatography; TXRF: Total Reflexion XR FLuorescence; HFIP: 1,1,1,3,3,3-hexafluoroisopropanol

LOD: limit of detection; LOQ: limit of quantification

Table 7. List of primary aromatic amines analysed.

To be completed on receipt of the delayed analysis report						

i) Analysis and explanation of any discrepancies observed between contaminant levels expected and decontamination efficiency - Art 13(5)(i).

To be completed on receipt of the delayed analysis report

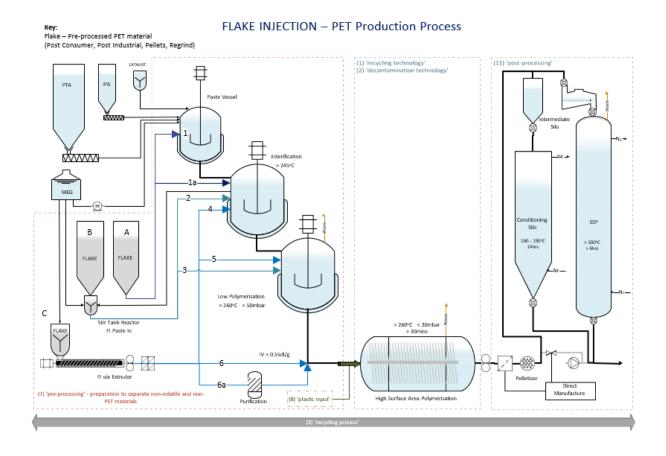
Table 8. Classification of the incidental contaminants

To be co	impleted on r	eceipt of the	delayed analysis r	report
onsidering 1L beverage filled in a PE	T hottle of 27.2	7		

^{*}considering 1L beverage filled in a PET bottle of 27.2g

Table 9. Results of the safety evaluation of the incidental contaminants

to be completed on receipt of the delayed analysis report						
	TE SONI DIELEM OI					


Decontamination efficiency

To be completed on receipt of the delayed analysis report

j) a discussion of the differences with previous reports published in accordance with this paragraph, if any - Art 13(5)(j)

To be completed on receipt of the delayed analysis report

Appendix I –.FLAKE INJECTION – PET Production Process

Appendix II – List of all substances with a molecular weight below 1.000 Dalton found in the plastic inputs to each of the decontamination installations and in the recycled plastic output thereof, sorted in descending order by their relative occurrence

To be completed on rec			
		_	
_		_	

Glossary of Terms

Cmod Modelled concentration

DEG diethylene glycol
EG ethylene glycol

GC gas chromatography

HPLC high performance liquid chromatography

ICP-MS Inductively Coupled Plasma Mass Spectrometry

MS Mass Spectrometry

NIAS non-intentionally added substances

PE polyethylene

PET polyethylene terephthalate

PP polypropylene

PVC polyvinyl chloride

TPA terephthalic acid

TTC Threshold of Toxicological Concern

XRF X-ray fluorescence spectroscopy

REFERENCES

ECHA (2025). Styrene Substance Infocard. Retrieved March 4, 2025, from <u>Substance Information - ECHA</u> (europa.eu)

EFSA (2011). Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF). Scientific Opinion on the criteria to be used for safety evaluation of a mechanical recycling process to produce recycled PET intended to be used for manufacture of materials and articles in contact with food. EFSA Journal, 9, 2184.

EFSA Scientific Committee, More, S. J., Bampidis, V., Benford, D., Bragard, C., Halldorsson, T. I., Hernández-Jerez, A. F., Hougaard, B. S., Koutsoumanis, K. P., Machera, K., Naegeli, H., Nielsen, S. S., Schlatter, J. R., Schrenk, D., Silano, V., Turck, D., Younes, M., Gundert-Remy, U., Kass, G. E. N., ... Wallace, H. M. (2019). Guidance on the use of the threshold of toxicological concern approach in food safety assessment. EFSA Journal, 17(6), 5708. https://doi.org/10.2903/j.efsa.2019.5708

EFSA CEP Panel (EFSA Panel on Food Contact Materials, Enzymes and Processing Aids), Lambré, C., Barat Baviera, J. M., Bolognesi, C., Chesson, A., Cocconcelli, P. S., Crebelli, R., Gott, D. M., Grob, K., Mengelers, M., Mortensen, A., Rivière, G., Steffensen, I.-L., Tlustos, C., Van Loveren, H., Vernis, L., Zorn, H., Dudler, V., Milana, M. R., ... Lampi, E. (2024). Scientific Guidance on the criteria for the evaluation and on the preparation of applications for the safety assessment of post-consumer mechanical PET recycling processes intended to be used for manufacture of materials and articles in contact with food. EFSA Journal, 22(7), e8879. https://doi.org/10.2903/j.efsa.2024.8879

European Commission (2012) Commission Implementing Regulation (EU) No 872/2012 of 1 October 2012 adopting the list of flavouring substances provided for by Regulation (EC) No 2232/96 of the European Parliament and of the Council, introducing it in Annex I to Regulation (EC) No 1334/2008 of the European Parliament and of the Council and repealing Commission Regulation (EC) No 1565/2000 and Commission Decision 1999/217/EC, applicable from 22/10/2012

Franz, R.; Mauer, A.; Welle, F. (2004). European survey on post-consumer poly(ethylene terephthalate) materials to determine contamination levels and maximum consumer exposure from food packages made from recycled. PET. Food Addit. Contam. 2004, 21, 265–286. https://doi.org/10.1080/02652030310001655489

Franz, R.; Welle, F. (2020). Contamination levels in re-collected PET bottles from non-food applications and their impact on the safety of recycled PET for food contact. Molecules 2020, 25, 4998. https://doi.org/10.3390/molecules25214998

Nerin, C., Bourdoux, S., Faust, B., Gude, T., Lesueur, C., Simat, T., Stoermer, A., Van Hoek, E., Oldring, P. (2022). Guidance in selecting analytical techniques for the identification and quantification of non-intentionally added substances (NIAS) in food contact materials (FCMS). Food Additives & Contaminants: Part A, vol 39(3): 620-643. https://doi.org/10.1080/19440049.2021.2012599

Peters, R.J.B., Groeneveld, I., Sanchez, P.L., Gebbink, W\$., Gersen, A., de Nijs, M., van Leeuwen, S.P.J. (2019). Review of analytical approaches for the identification of non-intentionally added substances in paper and board food contact materials. Trends Food Sci Technol. 85:44–54. https://doi:10.1016/j.tifs.2018.12.010.

Welle F. (2008). Decontamination efficiency of a new post-consumer poly(ethylene terephthalate) (PET) recycling concept, Food Additives & Contaminants: Part A, 25:1, 123-131. https://doi.org/10.1080/02652030701474227

Welle, F. (2021). Safety Evaluation of Polyethylene Terephthalate Chemical Recycling Processes. Sustainability 2021, 13, 12854. https://doi.org/10.3390/su132212854